
pyobs-archive

Tim-Oliver Husser

Feb 15, 2023

CONTENTS

1 Installation 3

2 REST API Reference 7
2.1 Authentication . 7
2.2 List images . 7
2.3 Filter options . 8
2.4 Image information . 8
2.5 Downloading images . 9
2.6 Uploading images . 9

i

ii

pyobs-archive

pyobs-archive is a stand-alone archive for FITS images. It provides a general look&feel and an REST API similar to
the one used by the LCO archive.

CONTENTS 1

https://developers.lco.global/#archive

pyobs-archive

2 CONTENTS

CHAPTER

ONE

INSTALLATION

While it is definitely possible to run pyobs-weather without Docker, we highly recommend it for its simplicity.

First, build the image:

cd https://github.com/pyobs/pyobs-archive.git
cd pyobs-archive
docker build . -t pyobs-archive

pyobs-archive requires a database for storing its data and nginx for serving static files. Easiest way to deploy everything
is using docker-compose.

A typical docker-compose.yml looks like this:

version: '3'

services:
db:
image: postgres:11
volumes:
- pgdata:/var/lib/postgresql/data

restart: always

archive:
image: pyobs-archive
volumes:
- /local_data/:/data/
- ./local_settings.py:/archive/pyobs_archive/local_settings.py
- static:/archive/static

depends_on:
- db

restart: always
command: bash -c "python manage.py collectstatic --no-input && python manage.py␣

→˓makemigrations && python manage.py migrate && gunicorn --workers=3 pyobs_archive.wsgi -
→˓b 0.0.0.0:8000"

nginx:
image: nginx
volumes:
- ./nginx.conf:/etc/nginx/conf.d/default.conf
- static:/static/static

ports:
- 8001:80

(continues on next page)

3

pyobs-archive

(continued from previous page)

restart: always

volumes:
pgdata:
static:

The configuration for the “archive” container contains a volume that points to the local directory /local_data/. This will
be the directory where the archive stores its files. Please adjust as necessary.

In this example, nginx needs a configuration file nginx.conf in the same directory, which might look like this:

server {
listen 80;
server_name 127.0.0.1;
client_max_body_size 50M;

location / {
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header Host $host;
proxy_redirect off;
if (!-f $request_filename) {

proxy_pass http://archive:8000;
break;

}
}

location /static/ {
root /static;

}
}

And pyobs-archive itself needs a configuration file called local_settings.py. Here is the file for MONET/S as an example:

disable debug
DEBUG = False

we're reverse proxying, so only localhost is allowed to access
ALLOWED_HOSTS = ['localhost']

settings for archive
ARCHIV_SETTINGS = {

'HTTP_ROOT': 'https://archive.example.com/',
'ARCHIVE_ROOT': '/data/',
'PATH_FORMATTER': '{SITEID}/{DAY-OBS}/',
'FILENAME_FORMATTER': None,

}

You have to adjust the settings in ARCHIV_SETTINGS as necessary:

• HTTP_ROOT is the URL the archive will be accessible at.

• ARCHIVE_ROOT is the internal data directory and is mapped in the docker-compose file to a local directory.
Should be left as it is.

4 Chapter 1. Installation

pyobs-archive

• PATH_FORMATTER: A format for the pathes to store the image in. Uses FITS header keywords as placeholders.

• FILENAME_FORMATTER: Same as the PATH_FORMATTER, but for the filename. If None, filenames won’t
be changed.

With all three files in one directory, you can easily do:

docker-compose up -d

and the whole system should be up and running within a minute.

Finally, you need to get into the container and create a superuser:

docker exec -it weather_weather_1 bash
./manage.py createsuperuser

The web frontend should now be accessible via web browser at http://localhost:8001/ and the admin panel at http:
//localhost:8001/admin.

5

http://localhost:8001/
http://localhost:8001/admin
http://localhost:8001/admin

pyobs-archive

6 Chapter 1. Installation

CHAPTER

TWO

REST API REFERENCE

2.1 Authentication

All requests to the REST API must contain a HTTP header of the form:

Authentication: Token <token>

Where <token> is an auth token that can be obtained by calling the /api-token-auth/ endpoint with valid credentials.

As an example, you can get a token like this:

http https://archive.example.com/api-token-auth/ username=husser password=topsecret

Which might return something like this:

{"token":"3d46d6b98edef947402e032e73eca7b54661c968"}

The token can now be used in other requests:

http https://archive.example.com/frames/ "Authorization: Token␣
→˓3d46d6b98edef947402e032e73eca7b54661c968"

2.2 List images

Images in the archive can easily be listed using the /frames/ endpoint. It accepts HTTP GET parameters for filtering.
A typical example would be:

http https://archive.example.com/frames/?night=2020-02-01

for getting a list of all images taken in the night of 1 Feb, 2020.

Other possible filter parameters are:

• IMAGETYPE: Type of image (see Filter options for details).

• binning: Binning of image (see Filter options for details).

• SITE: Site the image was taken (see Filter options for details).

• TELESCOPE: Telescope the image was taken with (see Filter options for details).

• INSTRUMENT: Instrument the image was taken with (see Filter options for details).

• FILTER: Filter the image was taken with (see Filter options for details).

7

pyobs-archive

• RLEVEL: Reduction level (0=unreduced, 1=reduced).

• OBJECT: Name of observed object.

• EXPTIME: Exposure time in seconds.

• night: Night of observation in yyyy-mm-dd format.

• basename: Name of FITS file.

• REQNUM: Request number from robotic system.

• start: Limit to images taken after this, given in isot format.

• end: Limit to images taken before this, given in isot format.

• RA: If RA/DEC are given, limit search to 10’ around position

• DEC: See above.

• limit: Maximum number of images to return.

• offset: Offset for list of images to return, use for pagination together with limit above.

• order: Order results using this column.

• asc: If given, order ascending instead of descending.

2.3 Filter options

A call to the /frames/aggregate/ endpoint gives possible choices for some of the filter options:

http https://archive.example.com/frames/aggregate/

Might result in something like:

{
"binnings": ["1x1", "3x3"],
"filters": ["B", "V", "R"],
"imagetypes": ["bias", "dark", "object", "skyflat"],
"instruments": ["instr1", "instr2"],
"sites": ["Paranal", "Mauna Kea"],
"telescopes": ["39m0","30m0"]

}

2.4 Image information

Information about a single image can be retrieved using the /frames/image/ endpoint, e.g.:

http https://archive.example.com/frames/1000/

More specific information can be obtaines using:

for a list of related images.
http https://archive.example.com/frames/1000/related/

for the FITS headers in JSON format.
(continues on next page)

8 Chapter 2. REST API Reference

pyobs-archive

(continued from previous page)

http https://archive.example.com/frames/1000/headers/

for a preview image.
http https://archive.example.com/frames/1000/preview/

A single image can be downloaded via:

wget https://archive.example.com/frames/1000/download/

2.5 Downloading images

A whole bunch of images can be downloaded via /zip/ and listing the frames in the body, e.g.:

wget https://archive.example.com/frames/zip/ --post-data="auth_token=<token>&frame_
→˓ids[]=1000&frame_ids[]=1001" -O data.zip

The auth token needs to go into the POST body in this case, and a list of image IDs can be added using “frame_ids[]”.

2.6 Uploading images

A registered admin user may send new files to the /create/ endpoint for automatically inserting images into the archive.

2.5. Downloading images 9

	Installation
	REST API Reference
	Authentication
	List images
	Filter options
	Image information
	Downloading images
	Uploading images

